隐藏

ElasticSearch分词

发布:2023/1/13 17:11:07作者:管理员 来源:本站 浏览次数:467

在全文搜索(Fulltext Search)中,词(Term)是一个搜索单元,表示文本中的一个词,标记(Token)表示在文本字段中出现的词,由词的文本、在原始文本中的开始和结束偏移量、以及数据类型等组成。ElasticSearch 把文档数据写到倒排索引(Inverted Index)的结构中,倒排索引建立词(Term)和文档之间的映射,索引中的数据是面向词,而不是面向文档的。分析器(Analyzer)的作用就是分析(Analyse),用于把传入Lucene的文档数据转化为倒排索引,把文本处理成可被搜索的词。分析器由一个分词器(Tokenizer)和零个或多个标记过滤器(TokenFilter)组成,也可以包含零个或多个字符过滤器(Character Filter)。


在ElasticSearch引擎中,分析器的任务是分析(Analyze)文本数据,分析是分词,规范化文本的意思,其工作流程是:


   首先,字符过滤器对分析(analyzed)文本进行过滤和处理,例如从原始文本中移除HTML标记,根据字符映射替换文本等,

   过滤之后的文本被分词器接收,分词器把文本分割成标记流,也就是一个接一个的标记,

   然后,标记过滤器对标记流进行过滤处理,例如,移除停用词,把词转换成其词干形式,把词转换成其同义词等,

   最终,过滤之后的标记流被存储在倒排索引中;

   ElasticSearch引擎在收到用户的查询请求时,会使用分析器对查询条件进行分析,根据分析的结构,重新构造查询,以搜索倒排索引,完成全文搜索请求,


可见,分析器扮演的是处理索引数据和查询条件的重要角色。在2.4版本中,ElasticSearch 预定义了7个分析器,并且支持用户根据预定义的字符过滤器,分词器和标记过滤器创建自定义的分析器,以满足用户多样性的文本分析需求。


用户在创建索引时配置索引的分析,通过向ElasticSearch发送请求,在请求body的settings 配置节中设置索引的分析器,例如,为索引配置默认的分析器:

复制代码


"settings":{  

   "index":{

       "analysis":{

           "analyzer":{

               "default":{

                   "type":"standard"

                   ,"stopwords":"_english_"

               }

           }

       }

   }

}


复制代码


一,字符过滤器(Char Filter)


字符过滤器对未经分析的文本起作用,作用于被分析的文本字段(该字段的index属性为analyzed),字符过滤器在分词器之前工作,用于从文档的原始文本去除HTML标记(markup),或者把字符“&”转换为单词“and”。ElasticSearch 2.4版本内置3个字符过滤器,分别是:映射字符过滤器(Mapping Char Filter)、HTML标记字符过滤器(HTML Strip Char Filter)和模式替换字符过滤器(Pattern Replace Char Filter)。


1,映射字符过滤器


映射字符过滤器,类型是mapping,需要建立一个查找字符和替换字符的映射(Mapping),过滤器根据映射把文本中的字符替换成指定的字符。

复制代码


{

   "index" : {

       "analysis" : {

           "char_filter" : {

               "my_mapping" : {

                   "type" : "mapping",

                   "mappings" : [

                     "ph => f",

                     "qu => k"

                   ]

               }

           },

           "analyzer" : {

               "custom_with_char_filter" : {

                   "tokenizer" : "standard",

                   "char_filter" : ["my_mapping"]

               }

           }

       }

   }

}


复制代码


2,HTML标记字符过滤器


HTML标记字符过滤器,类型是html_strip,用于从原始文本中去除HTML标记。


3,模式替换字符过滤器


模式替换字符过滤器,类型是pattern_replace,它使用正则表达式(Regular Expression)匹配字符,把匹配到的字符替换为指定的替换字符串。

复制代码


PUT my_index

{

 "settings": {

   "analysis": {

     "analyzer": {

       "my_analyzer": {

         "tokenizer": "standard",

         "char_filter": [

           "my_char_filter"

         ]

       }

     },

     "char_filter": {

       "my_char_filter": {

         "type": "pattern_replace",

         "pattern": "(\\d+)-(?=\\d)",

         "replacement": "$1_"

       }

     }

   }

 }

}


复制代码


pattern参数:指定Java正则表达式;


replacement参数:指定替换字符串,把正则表达式匹配的字符串替换为replacement参数指定的字符串;


二,分词器(Tokenizer)


分词器在字符过滤器之后工作,用于把文本分割成多个标记(Token),一个标记基本上是词加上一些额外信息,分词器的处理结果是标记流,它是一个接一个的标记,准备被过滤器处理。ElasticSearch 2.4版本内置很多分词器,本节简单介绍常用的分词器。


1,标准分词器(Standard Tokenizer)


标准分词器类型是standard,用于大多数欧洲语言,使用Unicode文本分割算法对文档进行分词。


2,字母分词器(Letter Tokenizer)


字符分词器类型是letter,在非字母位置上分割文本,这就是说,根据相邻的词之间是否存在非字母(例如空格,逗号等)的字符,对文本进行分词,对大多数欧洲语言非常有用。


3,空格分词器(Whitespace Tokenizer)


空格分词类型是whitespace,在空格处分割文本


4,小写分词器(Lowercase Tokenizer)


小写分词器类型是lowercase,在非字母位置上分割文本,并把分词转换为小写形式,功能上是Letter Tokenizer和 Lower Case Token Filter的结合(Combination),但是性能更高,一次性完成两个任务。


5,经典分词器(Classic Tokenizer)


经典分词器类型是classic,基于语法规则对文本进行分词,对英语文档分词非常有用,在处理首字母缩写,公司名称,邮件地址和Internet主机名上效果非常好。


三,标记过滤器(Token Filter)


分析器包含零个或多个标记过滤器,标记过滤器在分词器之后工作,用来处理标记流中的标记。标记过滤从分词器中接收标记流,能够删除标记,转换标记,或添加标记。ElasticSearch 2.4版本内置很多标记过滤器,本节简单介绍常用的过滤器。


1,小写标记过滤器(Lowercase)


类型是lowercase,用于把标记转换为小写形式,通过language参数指定语言,小写标记过滤器支持的语言有:Greek, Irish, and Turkish

复制代码


index :

   analysis :

       analyzer :

           myAnalyzer2 :

               type : custom

               tokenizer : myTokenizer1

               filter : [myTokenFilter1, myGreekLowerCaseFilter]

               char_filter : [my_html]

       tokenizer :

           myTokenizer1 :

               type : standard

               max_token_length : 900

       filter :

           myTokenFilter1 :

               type : stop

               stopwords : [stop1, stop2, stop3, stop4]

           myGreekLowerCaseFilter :

               type : lowercase

               language : greek

       char_filter :

             my_html :

               type : html_strip

               escaped_tags : [xxx, yyy]

               read_ahead : 1024


复制代码


2,停用词标记过滤器(Stopwords)


类型是stop,用于从标记流中移除停用词。参数stopwords用于指定停用词,ElasticSearch 2.4版本提供的预定义的停用词列表:预定义的英语停用词是_english_,使用预定义的英语停用词列表是  “stopwords” :"_english_"

复制代码


PUT /my_index

{

   "settings": {

       "analysis": {

           "filter": {

               "my_stop": {

                   "type":       "stop",

                   "stopwords": ["and", "is", "the"]

               }

           }

       }

   }

}


复制代码


3,词干过滤器(Stemmer)


类型是stemmer,用于把词转换为其词根形式存储在倒排索引,能够减少标记。

复制代码


{

   "index" : {

       "analysis" : {

           "analyzer" : {

               "my_analyzer" : {

                   "tokenizer" : "standard",

                   "filter" : ["standard", "lowercase", "my_stemmer"]

               }

           },

           "filter" : {

               "my_stemmer" : {

                   "type" : "stemmer",

                   "name" : "english"

               }

           }

       }

   }

}


复制代码


4,同义词过滤器(Synonym)


类型是synonym,在分析阶段,基于同义词规则,把词转换为其同义词存储在倒排索引中

复制代码


{

   "index" : {

       "analysis" : {

           "analyzer" : {

               "synonym" : {

                   "tokenizer" : "whitespace",

                   "filter" : ["synonym"]

               }

           },

           "filter" : {

               "synonym" : {

                   "type" : "synonym",

                   "synonyms_path" : "analysis/synonym.txt"

               }

           }

       }

   }

}


复制代码


同义词文件的格式示例:

复制代码


# Blank lines and lines starting with pound are comments.


# Explicit mappings match any token sequence on the LHS of "=>"

# and replace with all alternatives on the RHS.  These types of mappings

# ignore the expand parameter in the schema.

# Examples:

i-pod, i pod => ipod,

sea biscuit, sea biscit => seabiscuit


# Equivalent synonyms may be separated with commas and give

# no explicit mapping.  In this case the mapping behavior will

# be taken from the expand parameter in the schema.  This allows

# the same synonym file to be used in different synonym handling strategies.

# Examples:

ipod, i-pod, i pod

foozball , foosball

universe , cosmos


# If expand==true, "ipod, i-pod, i pod" is equivalent

# to the explicit mapping:

ipod, i-pod, i pod => ipod, i-pod, i pod

# If expand==false, "ipod, i-pod, i pod" is equivalent

# to the explicit mapping:

ipod, i-pod, i pod => ipod


# Multiple synonym mapping entries are merged.

foo => foo bar

foo => baz

# is equivalent to

foo => foo bar, baz


复制代码


四,系统预定义的分析器


在创建索引映射时引用分析器,如果没有定义分析器,那么ElasticSearch将使用默认的分析器,用户可以通过API设置默认的分析器。


default 逻辑名称用于配置在索引和搜索时使用的分析器,default_search 逻辑名称用于配置在搜索时使用的分析器。


index :

 analysis :

   analyzer :

     default :

       tokenizer : keyword


1,标准分析器(Standard)


分析器类型是standard,由标准分词器(Standard Tokenizer),标准标记过滤器(Standard Token Filter),小写标记过滤器(Lower Case Token Filter)和停用词标记过滤器(Stopwords Token Filter)组成。参数stopwords用于初始化停用词列表,默认是空的。


2,简单分析器(Simple)


分析器类型是simple,实际上是小写标记分词器(Lower Case Tokenizer),在非字母位置上分割文本,并把分词转换为小写形式,功能上是Letter Tokenizer和 Lower Case Token Filter的结合(Combination),但是性能更高,一次性完成两个任务。


3,空格分析器(Whitespace)


分析器类型是whitespace,实际上是空格分词器(Whitespace Tokenizer)。


4,停用词分析器(Stopwords)


分析器类型是stop,由小写分词器(Lower Case Tokenizer)和停用词标记过滤器(Stop Token Filter)构成,配置参数stopwords 或 stopwords_path指定停用词列表。


5,雪球分析器(Snowball)


分析器类型是snowball,由标准分词器(Standard Tokenizer),标准过滤器(Standard Filter),小写过滤器(Lowercase Filter),停用词过滤器(Stop Filter)和雪球过滤器(Snowball Filter)构成。参数language用于指定语言。

复制代码


{

   "index" : {

       "analysis" : {

           "analyzer" : {

               "my_analyzer" : {

                   "type" : "snowball",

                   "language" : "English"

               }

           }

       }

   }

}


复制代码


6,自定义分析器


分析器类型是custom,允许用户定制分析器。参数tokenizer 用于指定分词器,filter用于指定过滤器,char_filter用于指定字符过滤器。

复制代码


index :

   analysis :

       analyzer :

           myAnalyzer2 :

               type : custom

               tokenizer : myTokenizer1

               filter : [myTokenFilter1, myTokenFilter2]

               char_filter : [my_html]

               position_increment_gap: 256

       tokenizer :

           myTokenizer1 :

               type : standard

               max_token_length : 900

       filter :

           myTokenFilter1 :

               type : stop

               stopwords : [stop1, stop2, stop3, stop4]

           myTokenFilter2 :

               type : length

               min : 0

               max : 2000

       char_filter :

             my_html :

               type : html_strip

               escaped_tags : [xxx, yyy]

               read_ahead : 1024


复制代码


五,查询分析


在分析(_ayalyze)端点上执行分析查询,用于对查询参数进行分析,并返回分析的结果


1,使用默认的分析器执行查询分析


例如,在索引ebrite上执行分析查询,分析字符“After School”,从返回的结果中,可以看到两个标记(Token):“after”和“school”,类型(type)是字符数字类型(<ALPHANUM>),偏移量(offset)从1开始计数,位置(position)从0开始计数。


POST myindex/_analyze -d

"After School"


2,指定分析器


POST myindex/_analyze?analyzer=standard -d

"After School"


3,指定分词器和过滤器


POST myindex/_analyze?tokenizer=standard&filters=lowercase -d

"After School"


4,在特定的字段上执行分析查询


POST myindex/_analyze?field=doc_field&tokenizer=standard&filters=lowercase -d

"After School"


 


附,在创建索引时,指定默认的分析器


示例代码,使用PUT动词,在创建索引时指定默认的分析器,ElasticSearch引擎在索引文档时,使用默认的分析器对index属性为analyzed的文本字段执行分析操作,而非分析字段,将不会应用分析操作。

复制代码


{  

  "settings":{  

     "number_of_shards":5,

     "number_of_replicas":0,

     "index":{

       "analysis":{

           "analyzer":{

               "default":{

                   "type":"standard"

                   ,"stopwords":"_english_"

               }

           }

       }

     }

  },

  "mappings":{  

     "events":{  

        "dynamic":"false",

        "properties":{  

           "eventid":{  

              "type":"long",

              "store":false,

              "index":"not_analyzed"

           },

           "eventname":{  

              "type":"string",

              "store":false,

              "index":"analyzed",

              "fields":{  

                 "raw":{  

                    "type":"string",

                    "store":false,

                    "index":"not_analyzed"

                 }

              }

           }

        }

     }

  }

}


复制代码


 


参考文档:


Elasticsearch: Analyzing Text with the Analyze API


Elasticsearch: The Definitive Guide [2.x] » Dealing with Human Language


Elasticsearch Reference [2.4] » Analysis